搜索“凡亿教育”进入网站可下载免费pcb视频教程,十几位*导师群里解答问题,QQ群:*
深圳市凡亿技术开发有限公司成立于2013年,提供电路板设计服务、电路板设计教育咨询、中高端PCB快捷打样,中小批量电路板生产制造服务,公司坚持以技术为向导,追求卓越品质和客户持续满意的经营理念,为信息电子行业的创新持续提供服务。
多层PCB通常用于高速、高性能的系统,其中一些层用于电源或地参考平面,这些平面通常是没有分割的实体平面。无论这些层做什么用途,电压为多少,它们将作为与之相邻的信号走线的电流返回路径。构造一个好的低阻抗的电流返回路径较重要的就是合理规划这些参考平面的设计。图1所示为一种典型多层PCB叠层配置。
信号层大部分位于这些金属实体参考平面层之间,构成对称带状线或是非对称带状线。此外,板子的上、下两个表面(**层和底层),主要用于放置元件的焊盘,其上也有一些信号走线,但不能太长,以减少来自走线的直接辐射。
通常用P表示参考平面层;S表示信号层;T表示**层;B表示底层。下面以一个12层的PCB来说明多层PCB的结构和布局,如图6-14所示,其层的用途分配为“T—P—S—P—s—P—S—P—S—s—P—B”。
下面是一些关于多层PCB叠层设计的原则。
为参考平面设定直流电压:解决电源完整性的一个重要措施是使用去耦电容,而去耦电容只能放置在PCB的**层和底层,去耦电容的效果会严重受到与其相连的走线、焊盘,以及过孔的影响,这就要求连接去耦电容的走线尽量短而宽,过孔尽量短。如图所示,将*2层设置成分配给高速数字器件(如处理器)的电源;将*4层设置成高速数字地;而将去耦电源放置在PCB的**层;这是一种比较合理的设计。此外,要尽量保证由同一个高速器件所驱动的信号走线以同样的电源层作为参考平面,而且此电源层为高速器件的电源。
确定多电源参考平面:多电源层将被分割成几个电压不同的实体区域,如图所示中将*11层分配为多电源层,那么其附近的*10层和底层上的信号电流将会遭遇不理想的返回路径,使返回路径上出现缝隙。对于高速信号,这种不合理的返回路径设计可能会带来严重的问题。所以,高速信号布线应该远离多电源参考平面。
多个地敷铜层可以有效地减小PCB的阻抗,减小共模EMI。
信号层应该和邻近的参考平面紧密耦合(即信号层和邻近敷铜层之间的介质厚度要很小);电源敷铜和地敷铜应该紧密耦合。
合理设计布线组合:为了完成复杂的布线,走线的层间转换是不可避免的,而把同一个信号路径所跨越的两个层称为一个“布线组合”。信号层间转换时要保证返回电流可以顺利地从-个参考平面流到另一个参考平面。事实上,较妤的布线组合设计是避免返回电流从一个参考平面流到另一个参考平面,而是简单地从参考平面的一个表面流到另一个表面。如图所示中,*3层和*5层、*5层和*7层,以及*7层和*9层都可以作为一个布线组合。但是把*3层和*9层作为一个布线组合就不是合理的设计,它需要返回电流从*4层耦合到*6层,再从*6层耦合到*8层,这条路径对于返回电流并不通畅。尽管可以通过在过孔附近放置去耦电容或者减小参考平面间的介质厚度来减小地弹,但并非上策,在实际系统中可能还无法实现。
设定布线方向:在同一信号层上,保证大多数布线的方向是一致的,同时与相邻信号层的布线方向正交。如图所示中,可将*3层和*7层的布线方向设为“南北”走向,而将*5层和*9层的布线方向设为“东西”走向。 针对不同的系统,其叠层设计的配置有所不同,下面列出一些常用的配置,如表所示。
搜索“凡亿教育”进入网站可下载免费pcb视频教程,十几位*导师群里解答问题,QQ群:*
深圳市凡亿技术开发有限公司成立于2013年,提供电路板设计服务、电路板设计教育咨询、中高端PCB快捷打样,中小批量电路板生产制造服务,公司坚持以技术为向导,追求卓越品质和客户持续满意的经营理念,为信息电子行业的创新持续提供服务。
双层PCB板是多层板的一种,在电路高度集成化程度比较简单的设备中还是有大量的使用。作为一名PCB工程师,现在市面上的PCB设计公司普遍要求层数在6层以上.在掌握6层以上多层板的设计之前较好先学会递进画法,即2-4-6层递增。由于双层线路板这种电路板的两面都有布线。所以两层之间也要有中间充满或涂上金属的小洞,即导孔。导孔连接两层的导线,用于传输电流和信号。在元器件的摆放位置上,建议画PCB时一般没有特殊要求的直插元件都默认放在**层,焊盘默认放在多层,贴片元件和焊盘放在**层或底层。